LONG RANGE COUPLINGS IN BENZOFURANS Louis G. Alexakos and Edwin N. Givens Mobil Research and Development Corporation Research Department, Paulsboro, New Jersey 08066 (Received in USA 22 July 1969; received in UK for publication 23 September 1969) The proton nmr spectra of several benzofurans have been examined. Interring 2,6- and 2,4-couplings were found in addition to the previously reported 3,7- couplings (1-9). Evidence was also found for an interaction

between H_3 and H_4 (9). The 2,6-couplings, analogous to those found in

indole (10) and benzothiophenes (10-16), follow a straight zig-zag path (10), as do the 3,7-couplings (2). The 2,4-couplings, which do not conform to such a pattern, are much smaller. Notably, no evidence was found for any interaction between H_2 and H_5 , which also conforms to a straight zig-zag pattern.

The interactions of H_2 with both H_4 and H_6 are illustrated clearly in the spectrum of 5,7-dichlorobenzofuran, where H_2 is coupled with all three protons in this molecule. This requires both interring 2,4- and 2,6- couplings in addition to the 2,3-coupling. In still another illustration,

4345

the H_4 and H_6 resonances in the 5-bromobenzofuran spectrum distinctly show the 2,4- and 2,6-couplings, respectively. These splittings are clearly absent in the spectrum of methyl 5-bromo-2-benzofurancarboxylate, where C_2 bears a substituent. No 2,5 or 2,7 interactions could be observed. Since the resonance shapes of H_2 in the spectra of 5-chloro-, 7-chloro-, and 5,7-dichlorobenzofurans are the same, then H_5 and H_7 must not interact with H_2 . An analogous identity of H_2 line shapes are also observed in the spectra of 5- and 7-methoxybenzofurans. Deuterium labeling in 5-chlorobenzofuran-2-D further supports the absence of 2,7-couplings. The line shapes of the H_7 resonance in both the labeled and unlabeled spectra are essentially identical.

The 3,4-coupling was not seen directly, but its effect could be seen in the spectrum of 5,7-dichlorobenzofuran. Frequency sweep decoupling of H_3 sharpened the two broad lines of the H_4 resonance into two distinct doublets, which demonstrates the 2,4-coupling. A plotted spectrum, using the iterated values with $J_{3,4}$ set at -0.12 Hz, the value reported earlier (9), was identical with the observed single resonance spectrum. Using the iterated values for 7-methoxybenzofuran and setting $J_{3,4} = -0.12$ Hz caused no observable change in the line shapes of the plotted spectrum. In all other computations $J_{3,4}$ was set at zero.

In all of these benzofurans H_3 couples with H_2 and H_7 where possible. Any other interactions of H_3 except the 3,4-coupling were too small to be seen. The identical H_3 doublets in 7-chloro- and 5,7-dichlorobenzofurans rule out any coupling between H_3 and H_5 .

These interring couplings are uniform for all of the benzofurans we have examined. Additional illustrations are shown in which these principles apply; <u>vis</u>., 5-nitrobenzofuran and 5- and 6-fluorobenzofuran.

In the spectrum of 7-methoxybenzofuran a coupling was observed between the methoxyl protons and H_6 ($J_{CH_3O,6}O.25$ Hz). The 5-methoxybenzofuran spectrum showed no such coupling. Apparently the steric restrictions of an adjacent group is required, as illustrated by similar couplings in the spectra of 3- and 6-methoxysalicylaldehydes and 3- and 6-methoxy-2-hydroxyacetophenones, where the ortho $J_{CH_3O,H} = 0.25$ Hz (17). Where the adjacent positions are not occupied, these couplings are absent, as in the spectra of 4- and 5-methoxysalicyaldehydes and 4- and 5-methoxy-2-hydroxyacetophenones (17).

The preparation and characterization of the compounds reported here are discussed elsewhere (18,19).

REFERENCES

- 1. J. A. Elvidge and R. G. Foster, J. Chem. Soc., 590 (1963).
- 2. J. A. Elvidge and R. G. Foster, J. Chem. Soc., 981 (1964).
- G. M. Brooke, B. S. Furniss and W. K. R. Musgrave, <u>J. Chem. Soc. C</u>, 580 (1968).
- 4. E. A. Abu-Mustafa and M. B. E. Fayez, <u>Can. J. Chem.</u>, <u>45</u>, 325 (1967).
- 5. C. H. Krauch, S. Farid and G. O. Schenck, Chem. Ber., 98, 3102 (1965).
- K. D. Kaufman, J. F. W. Keana, R. C. Kelly, D. W. McBride and G. Slomp, <u>J. Org. Chem.</u>, <u>27</u>, 2567 (1962).
- 7. E. V. Lassak and J. T. Pinkey, J. Chem. Soc. C, 2000 (1967).
- R. M. Kellogg, M. B. Groen and H. Wynberg, <u>J. Org. Chem.</u>, <u>32</u>, 3093 (1967).
- 9. A. D. Cohen and K. A. McLauchlan, Mol. Phys., 9, 49 (1965).
- M. Martin-Smith, S. T. Reid and S. Sternhell, <u>Tetrahedron Letters</u>, 2393 (1965).
- K. Takahashi, T. Kanda, F. Shoji and Y. Matsuki, <u>Bull. Chem. Soc.</u> <u>Japan</u>, <u>38</u>, 508 (1965).
- D. E. Boswell, J. A. Brennan, P. S. Landis and P. G. Rodewald, J. Heterocyclic Chem., 5, 69 (1968).
- P. S. Landis, J. A. Brennan and P. B. Venuto, <u>J. Chem. Eng. Data</u>, <u>12</u>, 610 (1967).
- K. Takahashi, I. Ito and K. Matsuki, <u>Bull Chem. Soc. Japan</u>, <u>39</u>, 2316 (1966).
- N. B. Chapman, D. F. Ewing, R. M. Scrowston and R. Westwood, <u>J. Chem.</u> <u>Soc. C</u>, 764 (1968).
- B. Caddy, M. Martin-Smith, R. K. Norris, S. T. Reid and S. Sternhell, <u>Aust. J. Chem.</u>, <u>21</u>, 1853 (1968).
- 17. St. Forsen, B. Akermark and T. Alm, Acta Chim Scand., 18, 2313 (1964).
- 18. E. N. Givens, and P. B. Venuto, J. Catalysis, in press.
- E. N. Givens, L. G. Alexakos and P. B. Venuto, <u>Tetrahedron</u>, <u>25</u>, 2407 (1969).
- 20. S. Costellano and A. A. Bothner-By, J. Chem. Phys., 41, 3863 (1964).

Chemical Shifts (pum) and Coupling Constants (Hs)^a

Benzofuran	Sol vent ^b	ed ⊷l	•	- 	ار م	•	6 7-	₺ ₢- ₺ ∩- ₺₢, <u>३-</u> ₺₢,७-	Je, IL-	لو. م	-7,6 ¹	۲, ۱	٩. پ	-۲, <u>۱</u>	원,7- 박,두 박,6- 박,7- ኝ,6-	بر ۲	بل م
5-bramo	c _b 6	7.10	6.18	7.42	ł	7.13	7.00	2.19	0.28	0 . łz	њ.	ł	2.08	0.57	ł	:	8.8
5-bramo-2- carbamethoxy	ce ^D 6	υ	6.98	7.31	ł	π.7	6.88	ł	:	ł	0.88	ł	2.05	0,60	ł	1	9.8
5-chloro	ເມຍີ	7.53	6.60	7.48	ł	31. 7	7.33	2.30	0.08	0.38	0.97	ł	2.52	0.58	ł	ł	8.8
5-chloro-2-D ^d	ແມ	ł	6.18	7.26	ł	7.00	7.06	ł	ł	1	0.6 ^e	ł	2°⊓	0.61	1	ł	8.7
7-chloro	cpcr ³ /c ^e p ^e	7.50	6.63	7.36	1.04	7.21	I	2.19	61.0	۳ ۳°0	1	7.87	1.07	1	7.82	ł	ł
5 ,7-dichloro		7.56	6.60	7.31	ł	7.18	:	2.20	0.26	0.51	ł	ł	1°6,1	ł	ł	ł	ł
5-me thoug	ີແມ	7.53	6.63	τ.α	ł	6.87	7.36	2,18	0.17	0.48	0.96	ł	2.63	0.54	ł	ł	9.0
7-methoxy ^f	cene	7.36	6.50	7.10	1°°+	6.57	1	2,17	0.16	0.37	ł	7.85	0.65	1	8.33	ł	ł
5-nitro	6003	7.76	6.90	8.49	ł	8.19	7.54	2.36	0.35	0. 38	0.98	ł	2.39	0.55	ł	ł	0*6
5-fluoro ^g	നുന്നു	7.86	6.87	7.36	ł	7.08	13.7	2.2 ⁴	0.31	0.62	0°- 99	6 8°8	2.71	0,51	9.47	4.1 5	8.9
6-fluoro ^g	and .	7.52	6.64	7.42	6.96	ł	7.19	2,25	0.23	0.27	0.95	8.60	5.44	04.0	9*50	2,30	9.0
(a) Varien A60 and HA 60 IL	and HA 60 IL m	mur spectrometers were used.	rometer	a vere		Experia	ental 1	Experimental line positions were obtained by interpolation with a precision	tions v	rere obt	tained 1	y inte	polatic	m vith	a preci	ision.	
of ± 0.05 Hz.	is. These data are the result of iterative computations done with a modified version of LACCOON II (Ref. 20), which	are the	result	of ite	rative	computa	tions d	one with	t a modi	fied w	ersion o	LAOC		(Ref. 2	0), whic	sh takes	_
into accou	into account magnetic equivalence factoring for groups of nuclei with spins I>1/2. In all of these solutions J _{3,4} was set at zero.	ivalence	factor	ing for	groups	of nuc	lei vit	h spine	I ≯ 1 /2.	La el	ц Ц С	iese sol	utions	J _{3,4} w	as act.	t zero.	_
Computed sl	Computed spectra plotted from the above data using lorens line shape gave the best fit to the experimental spectra. NAS errors were	from the	above	data us	ing lor	enz lin	e shape	gave ti	le best	fit to	the ext	ertment	al aper	stra. H	MB errol	s were	
<0.1 in ell	<pre><0.1 in all cases. Typical maximum errors in any line fit was 0.15 Hs.</pre>	L marcia	an erro	rs in a	ny line	fit wa	s 0.15	Hz.									
(b) Different solvents were tried until sufficient clarity for complete assignment of the spectra was obtained. No effort was made to	solvents were to	ried unt	th with	icient	clarity	for co	mplete	asigne	mt of t	the spec	tra vai	obtair	ed. K	o effor	t vas m	ide to	

- (c) ⁶CH₃ = 3.49 ppm.
- (d) Double resonance spectrum where \mathbb{R}_3 was irradiated. The deuterium quadrupole relaxation broadened \mathbb{R}_3^* .

find a uniform solvent system. Concentrations varied. An internal reference of tetramethylsilane was used.

- (e) Measured directly from the spectrum.
- computed spectrum which was identical with the observed single resonance spectrum. Setting J_{3,4} = -0.12 Hz did not change the line (f) Double resonance spectrum where G_{3}^{0} ($g_{3}^{0}_{3}^{0}$ = 3.62 ppm) was irradiated. Using these iterated values with $J_{3}^{1}_{3}_{0,6}$ = 0.25 Hz gave a shapes.
- (g) J_{H_3F} values are included here.